If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2+51t-36=0
a = 15; b = 51; c = -36;
Δ = b2-4ac
Δ = 512-4·15·(-36)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-69}{2*15}=\frac{-120}{30} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+69}{2*15}=\frac{18}{30} =3/5 $
| H(t)=-16t^2+48t+50t | | 6/x=9/19 | | (1/5)x+3x=2x+42 | | x+.25x=102 | | -(2/7)x-9=-(75/7) | | 4+12x-8x+3=29 | | 3x-23=9+x | | 2x^2+3x−1=0 | | x-56+4=-52 | | 65°+40°+x+83=180 | | −t4=−3πt= | | 5^(1/2)x+10=35 | | 4z-6.9=6.5+2z | | 3x-23=9x | | (x+4)*x-1=3x(x-2) | | 10t^2=t | | 3x-23+9x=180 | | 3p+3/4=71/2 | | 12x-10=140 | | 2x-39=23x+27 | | v−7=9+12v−7=9+12. | | 12x-39=23x=27 | | 4x/9=95 | | 1/5x+1/3=3(4/5x-4) | | 10-x=223 | | x/68-54=72 | | 4x*9=95 | | 11x-23+41=360 | | z-5.94=1.43 | | x/68+54=72 | | Y=37+40/3y | | 4-9x=95 |